General relativity simulator

Simulating an orbit around a spherical mass

The curvature of space-time around a spherical mass is described by the Schwarzschild metric.


c^2 d\tau^2 = \left(1 - \frac{2GM}{c^2 r} \right) c^2 dt^2 - \left(1 - \frac{2GM}{c^2 r} \right)^{-1} dr^2 - r^2 \left(d \theta^2 + sin^2 \theta d \varphi^2 \right)

We provide an Excel file simulating the orbit of a test particle around the spherical mass using a straightforward forward Euler simulation.


Download link: 20161106_geodesic_line_simulation_riemann_schwarzschild_2d_v3

The simulation is performed in a 2-dimensional space where \theta = \pi/2 and c=1 meaning the metric reduces to:


d\tau^2 = \left(1 - \frac{2GM}{r}\right) dt^2 - \left(1 - \frac{2GM}{r}\right)^{-1} dr^2 - r^2 d \varphi^2

or


 d\tau^2 = \left[ \begin{matrix} dr & d \varphi & dt \end{matrix} \right] \left[ \begin{matrix} - \left(1 - \frac{2GM}{r}\right)^{-1} & 0 & 0 \\ 0 & - r^2 & 0 \\ 0 & 0 & \left(1 - \frac{2GM}{r}\right) \end{matrix} \right] \left[ \begin{matrix} dr \\ d \varphi \\ dt \end{matrix} \right] = g_{ij} dx^i dx^j

where the right hand side uses Einstein notation.

Given coördinates r, \varphi, t and first order derivatives dr, d\varphi, dt at time t=0, the 2nd order derivatives feeding the simulation can be derived using the geodesic equation:


 \frac{d^2x^{\mu}}{dq^2} + \Gamma^{\mu}_{\nu\lambda} \frac{dx^{\nu}}{dq} \frac{dx^{\lambda}}{dq} = 0

where \Gamma is derived from


 \Gamma^m_{ij} = \frac{1}{2}g^{ml} \left( \frac{\delta g_{il}}{\delta x^j} + \frac{\delta g_{lj}}{\delta x^i} - \frac{\delta g_{ji}}{\delta x^l} \right)

again using Einstein notation and with g^{ml} the inverse matrix of the metric g.
The exact matrices \Gamma are provided in the Excel.

An example is provided below and can be simulated in the Excel by setting the starting values to r = 50, \varphi = 0, t = 0 and \frac{dr}{d\tau} = 0, \frac{d\varphi}{d\tau} = 0.0024 and the simulation step size to d\tau=0.4.

Simulation with G=M=1, at a distance of about 25 times the Schwarzschild radius. Perihelium-shift is clearly visible.
Simulation with G=M=1, at a distance of about 25 times the Schwarzschild radius. Perihelium-shift is clearly visible.